Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Type of study
Language
Document Type
Year range
1.
Nat Methods ; 20(4): 512-522, 2023 04.
Article in English | MEDLINE | ID: covidwho-2259999

ABSTRACT

In response to the emergence of SARS-CoV-2 variants of concern, the global scientific community, through unprecedented effort, has sequenced and shared over 11 million genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info , a platform that currently tracks over 40 million combinations of Pango lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials and the general public. We describe the interpretable visualizations available in our web application, the pipelines that enable the scalable ingestion of heterogeneous sources of SARS-CoV-2 variant data and the server infrastructure that enables widespread data dissemination via a high-performance API that can be accessed using an R package. We show how outbreak.info can be used for genomic surveillance and as a hypothesis-generation tool to understand the ongoing pandemic at varying geographic and temporal scales.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Genomics , Disease Outbreaks , Mutation
2.
mBio ; 11(4)2020 07 21.
Article in English | MEDLINE | ID: covidwho-660818

ABSTRACT

To date, limited genetic changes in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome have been described. Here, we report a 382-nucleotide (nt) deletion in SARS-CoV-2 that truncates open reading frame 7b (ORF7b) and ORF8, removing the ORF8 transcription regulatory sequence (TRS) and eliminating ORF8 transcription. The earliest 382-nt deletion variant was detected in Singapore on 29 January 2020, with the deletion viruses circulating in the country and accounting for 23.6% (45/191) of SARS-CoV-2 samples screened in this study. SARS-CoV-2 with the same deletion has since been detected in Taiwan, and other ORF7b/8 deletions of various lengths, ranging from 62 nt to 345 nt, have been observed in other geographic locations, including Australia, Bangladesh, and Spain. Mutations or deletions in ORF8 of SARS-CoV have been associated with reduced replicative fitness and virus attenuation. In contrast, the SARS-CoV-2 382-nt deletion viruses showed significantly higher replicative fitness in vitro than the wild type, while no difference was observed in patient viral load, indicating that the deletion variant viruses retained their replicative fitness. A robust antibody response to ORF8 has been observed in SARS-CoV-2 infection, suggesting that the emergence of ORF8 deletions may be due to immune-driven selection and that further deletion variants may emerge during the sustained transmission of SARS-CoV-2 in humans.IMPORTANCE During the SARS epidemic in 2003/2004, a number of deletions were observed in ORF8 of SARS-CoV, and eventually deletion variants became predominant, leading to the hypothesis that ORF8 was an evolutionary hot spot for adaptation of SARS-CoV to humans. However, due to the successful control of the SARS epidemic, the importance of these deletions for the epidemiological fitness of SARS-CoV in humans could not be established. The emergence of multiple SARS-CoV-2 strains with ORF8 deletions, combined with evidence of a robust immune response to ORF8, suggests that the lack of ORF8 may assist with host immune evasion. In addition to providing a key insight into the evolutionary behavior of SARS-CoV-2 as the virus adapts to its new human hosts, the emergence of ORF8 deletion variants may also impact vaccination strategies.


Subject(s)
Betacoronavirus/genetics , Genome, Viral , Open Reading Frames , Base Sequence , Betacoronavirus/immunology , Betacoronavirus/physiology , Humans , SARS-CoV-2 , Sequence Deletion , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL